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Abstract

A direct Eulerian generalized Riemann problem (GRP) scheme is derived for compressible fluid flows. Riemann invar-
iants are introduced as the main ingredient to resolve the generalized Riemann problem (GRP) directly for the Eulerian
formulation. The crucial auxiliary Lagrangian scheme in the original GRP scheme is not necessary in the present frame-
work. The delicate sonic cases can be easily treated and the extension to multidimensional cases is obtained using the
dimensional splitting technique.
� 2006 Elsevier Inc. All rights reserved.
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1. Introduction

The generalized Riemann problem (GRP) scheme, an analytic extension of the Godunov scheme, was orig-
inally developed for compressible fluid dynamics [1–4]. It will be explained for the one-dimensional system of
an unsteady and inviscid flow in conservation form. The equations are
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where q, u, e are density, velocity and internal energy, respectively, and p = p(q,e) is the pressure. As is cus-
tomary, we use the equally spaced grid points xj = jDx, the interface points xj+1/2 = (xj + xj+1)/2 defining the
cells Cj ¼ ½xj�1=2; xjþ1=2�; j 2 Z. Let U n

j be the average value of U over the cell Cj at time tn = nDt, and assume
that the data at time t = tn are piecewise linear with a slope rn

j , i.e., on Cj we have,
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Uðx; tnÞ ¼ Un
j þ rn

j ðx� xjÞ; x 2 ðxj�1=2; xjþ1=2Þ. ð1:2Þ
Then a second order Godunov-type scheme for (1.1) takes the form
U nþ1
j ¼ Un

j �
Dt
Dx
ðF ðU nþ1=2

jþ1=2 Þ � F ðU nþ1=2
j�1=2 ÞÞ; ð1:3Þ
where Unþ1=2
jþ1=2 is the mid-point value or the value of U at the cell interface x = xj+1/2 averaged over the time

interval [tn,tn+1]. The GRP scheme proceeds to derive the mid-point value Unþ1=2
jþ1=2 analytically by resolving

the generalized Riemann problem at each point (xj+1/2,tn) with accuracy of second order. More specifically,

the mid-point value Unþ1=2
jþ1=2 is computed with the formulae
U nþ1=2
jþ1=2 ¼ U n

jþ1=2 þ
Dt
2

oU
ot

� �n

jþ1=2

; U n
jþ1=2 ¼ RAð0; U n

jþ1=2;�;U
n
jþ1=2;þÞ; ð1:4Þ
where RAððx� xjþ1=2Þ=ðt � tnÞ; Un
jþ1=2;�;U

n
jþ1=2;þÞ is the solution of the Riemann problem for (1.1) centered at

(xj+1/2,tn), Un
jþ1=2;� and U n

jþ1=2;þ are the limiting values of initial data U(x,tn) on both sides of (xj+1/2,tn). With
the Godunov scheme or the Riemann solution Un

jþ1=2 in mind, it is clear that only ðoU=otÞnjþ1=2 needs to be
defined.

The GRP scheme was developed in [1,4] and designed to deal with this problem. The main ingredient there
is the analytic integration in time of the conservation laws (1.1). Two related versions, the Lagrangian and the
Eulerian, are developed, and the Eulerian version is always derived by using the Lagrangian case. This
approach has the advantage that the contact discontinuity in each local wave pattern is always fixed with
speed zero and the rarefaction waves and/or shock waves are located on either side. The main issue is how
to use characteristic coordinates in resolving centered rarefaction waves at the singularity point. However,
the passage from the Lagrangian to the Eulerian version is sometimes quite delicate, particularly for sonic
cases. An alternative approach by asymptotic analysis can be found in [12,5]. When just the Eulerian scheme
is required, e.g. in the two-dimensional computation, it would be useful to have a direct derivation of the Eule-
rian scheme.

The purpose of this paper is to present a direct and simple derivation of the Eulerian generalized Riemann
problem (GRP) scheme for compressible fluid flows. We indicate how to get the integration in time of the con-
servation laws (1.1) more directly and simply. Our approach is to apply Riemann invariants in order to resolve
the singularity at the jump discontinuity. The new point enables us to get rid of the auxiliary Lagrangian
scheme and has already been successfully applied to the shallow water equations with bottom topography
[13]. The extension of this scheme to multidimensional cases is obtained using the dimensional splitting
technique.

To be more precise, the main feature of the GRP scheme is the resolution of centered rarefaction waves. We
first observe the following property of the Riemann invariants; they are constant throughout an isentropic
rarefaction wave. This property implies that they are still regular inside the nonisentropic rarefaction wave
occurring in the generalized Riemann problem, even though the derivatives of the flow variables u, p and q
become singular at the initial discontinuity. Furthermore, the entropy is invariant along a streamline. When
characteristic coordinates are used, the entropy equation is decoupled from the continuity and momentum
equations so that we are able to solve it first. Then we are left with the Riemann invariants for the remaining
two equations. Next we observe that the flow variables u and p are continuous across the contact discontinuity
in the intermediate region so that we can first treat the directional derivatives of u and p and then proceed to
calculate the derivatives of the density q regardless of the location of the contact discontinuity. In addition, in
the sonic case, one of the characteristic curves inside the rarefaction wave is tangential to the t-axis. This prop-
erty enables us to apply the information already obtained for the rarefaction wave in order to compute the
time derivatives of all flow variables. We recall that in the original GRP scheme [1], the sonic case is more
delicate due to the nature of the transformation from the Lagrangian to the Eulerian framework.

For the shock wave side, we just use the usual approach in order to resolve the discontinuity [1,22]. Thus we
can obtain the instantaneous values of time derivatives in (1.4), simply through solving a linear algebraic
system containing two equations in terms of material derivatives of u and p. Therefore, this GRP scheme
for (1.1), roughly speaking, consists of two steps: (i) Solving the Riemann problem at the discontinuity.
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(ii) Solving a linear system of two algebraic equations, where the coefficients only depend on the Riemann
solution and the treatment of the GRP. In particular, the multidimensional extension is very simple. To sum-
marize, the present approach has the following advantage over the original scheme [1]. (i) The transformation
from the Lagrangian scheme is not necessary. (ii) We do not need to treat the sonic cases in a complicated way.
(iii) The extension to the multidimensional cases is straightforward.

This paper is organized as follows. In Section 2 we first present some preliminaries and notations, including
some basic relations among the flow variables and Riemann invariants. The resolution of rarefaction waves is
treated in Section 3 and shocks are treated in Section 4. We conclude the solution of the generalized Riemann
problem in Section 5 and the acoustic case in Section 6. The two-dimensional extension is discussed in Section
7. We outline the implementation of the GRP scheme in Section 8 and various standard 1-D and 2-D numer-
ical test cases are presented in Section 9.
2. Preliminaries and notations

In this section we present some preliminaries for the resolution of the generalized Riemann problem, par-
ticularly for rarefaction waves. Then we summarize the notations we use in the present paper for the reader’s
easy reference.

As is well-known [7], the system of Euler equations (1.1) takes the following form equivalently for smooth
flows:
Dq
Dt
þ q

ou
ox
¼ 0; q

Du
Dt
þ op

ox
¼ 0;

DS
Dt
¼ 0; ð2:1Þ
where D/Dt = o/ot + uo/ox is the material derivative, and the entropy S is related to the other variables
through the second law of thermodynamics
de ¼ T dS þ p
q2

dq ð2:2Þ
and T is the temperature. Regard p as a function of q and S, p = p(q,S). Then the local sound speed c is defined
as
c2 ¼ opðq; SÞ
oq

. ð2:3Þ
Thus the first or third equation of (2.1) can be replaced equivalently by
Dp
Dt
þ qc2 ou

ox
¼ 0. ð2:4Þ
Observe that the entropy S is constant along a streamline. As the entropy is fixed, the continuity and momen-
tum equations in (2.1) have the well-known feature of strictly hyperbolic conservation laws of two equations that
Riemann invariants exist, see [15,18]. Therefore let us introduce the Riemann invariants / and w,
/ ¼ u�
Z q cðx; SÞ

x
dx; w ¼ uþ

Z q cðx; SÞ
x

dx; ð2:5Þ
which play a pivotal role in the present study. Note that the entropy variable S is automatically a Riemann
invariant associated with u � c or u + c. In terms of total differentials we can write, with all thermodynamic
variables considered as functions of q and S,
dw ¼ c
q

dqþ ow
oS

dS þ du ¼ 1

qc
dp þ duþ Kðq; SÞdS; ð2:6Þ
where since ow
oS ¼

R q 1
x �

ocðx;SÞ
oS dx, we have
Kðq; SÞ ¼ � 1

qc
� op
oS
þ
Z q 1

x
� ocðx; SÞ

oS
dx. ð2:7Þ
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Recall [4, Eq. (4.67)] that along the characteristic C+:x 0(t) = u + c we have 1
qc dp þ du ¼ 0, so that in this direc-

tion we get
dw ¼ Kðq; SÞdS. ð2:8Þ

Observe that this can be further simplified if we note that, by oS/ot + uoS/ox = 0, we have (along C+),
dS ¼ c
oS
ox

dt. ð2:9Þ
Similarly, since o/
oS ¼ �

R q 1
x �

ocðx;SÞ
oS dx, we have
d/ ¼ du� 1

qc
dp � Kðq; SÞdS; ð2:10Þ
and, along C�:x 0(t) = u � c,
d/ ¼ �Kðq; SÞdS and dS ¼ �c
oS
ox

dt. ð2:11Þ
In particular, in the important case of polytropic gases, we have
p ¼ ðc� 1Þqe; c > 1; ð2:12Þ

where e is a function of S alone. Then the Riemann invariants are
/ ¼ u� 2c
c� 1

; w ¼ uþ 2c
c� 1

; ð2:13Þ
where c2 = cp/q. It follows that
2c
oc
oS
¼ c

q
op
oS

and
ow
oS
¼ 2

ðc� 1Þ
oc
oS
¼ c
ðc� 1Þqc

op
oS

. ð2:14Þ
In this case, by (2.7), we obtain
Kðq; SÞ ¼ 1

ðc� 1Þqc
op
oS
¼ T

c
. ð2:15Þ
In view of (2.13), we have
d/ ¼ du� c
ðc� 1Þqc

dp þ c
ðc� 1Þq dq; dw ¼ duþ c

ðc� 1Þqc
dp � c

ðc� 1Þq dq. ð2:16Þ
Also we note, combining (2.2) and (2.12),
T dS ¼ dp
ðc� 1Þq�

c2

ðc� 1Þq dq. ð2:17Þ
The GRP scheme assumes piecewise linear data for the flow variables. This leads to the generalized Riemann
problem for (1.1) subject to the initial data:
Uðx; 0Þ ¼
U L þ xU 0L; x < 0;

U R þ xU 0R; x > 0;

�
ð2:18Þ
where UL, UR, U 0L and U 0R are constant vectors. The initial structure of the solution U(x,t) to (1.1) and (2.18) is
determined by the associated Riemann solution, denoted by RA(x/t;UL,UR), and
lim
t!0

Uðkt; tÞ ¼ RAðk; UL;U RÞ; k ¼ x=t. ð2:19Þ
The local wave configuration is usually piecewise smooth and consists of rarefaction waves, shocks and con-
tact discontinuities, as the schematic description in Fig. 2.1. We refer to [7,4] for more details. The rarefaction
wave as a part of the solution RA(x/t;UL,UR), is referred to as the associated rarefaction wave.

The flow is isentropic for the associated rarefaction waves. So w (respectively, /) and S are constant inside
the rarefaction wave associated with u � c (respectively, u + c) and their derivatives vanish. As the general



(a)

(b)

Fig. 2.1. Typical wave configuration: (a) Wave pattern for the GRP. The initial data U 0ðxÞ ¼ UL þ xU 0L for x < 0 and U 0ðxÞ ¼ UR þ xU 0R
for x > 0. (b) Wave pattern for the associated Riemann problem.
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(curved) rarefaction waves are considered, the initial data (2.18) can be regarded as a perturbation of the Rie-
mann initial data UL, UR. We still expect w (respectively, /) and S to be regular inside the (u � c)-rarefaction
wave (respectively, (u + c)-rarefaction wave) at the singularity. As a key ingredient in this paper, we use the
Riemann invariants to resolve the rarefaction waves at the singularity point.

Now we consider the wave configuration in Fig. 2.1, a rarefaction wave moves to the left and a shock moves
to the right. The intermediate region is separated by a contact discontinuity. The intermediate states in the two
subregions are denoted by U1 and U2, respectively. Note that the pressure p and velocity u are continuous,
p1 = p2, u1 = u2, and only the density has a jump across the contact discontinuity q1 6¼ q2. Finally, we denote
by U* the limiting state at x = 0, as t! 0+. Otherwise stated, it is the result of the Riemann solution of the
associated problem at x = 0, with states UR, UL.

In Table 1, we list some notations we will use in this paper.

3. The resolution of centered rarefaction waves

As already pointed out, the important feature of the GRP scheme is the treatment of the resolution of cen-
tered rarefaction waves with the characteristic coordinates. Our objective is to obtain the time derivatives of
the flow variables at the singularity point (0,0).

Consider the rarefaction wave associated with u � c and denote by U�(x,t) (respectively, U1(x,t)) the states
(regions of smooth flows) ahead (respectively, behind) the rarefaction wave, see Fig. 2.1(a), where U�(x,t) is
determined by the left initial data U L þ U 0Lx. Characteristic curves throughout the rarefaction wave are
denoted by b(x,t) = b and a(x,t) = a, b 2 [bL,b*], �1 6 a < 0, bL = uL � cL, b* = u* � c*. They are the inte-
gral curves of the following equations, respectively,
dx
dt
¼ u� c;

dx
dt
¼ uþ c. ð3:1Þ
Here b and a are denoted as follows: b is the initial value of the slope u � c at the singularity (x,t) = (0,0), and
a for the transversal characteristic curves is the x-coordinate of the intersection point with the leading b-curve,



Table 1
Basic notations

Symbols Definitions

q, (u,v), p, S Density, velocity components, pressure, entropy
/, w Riemann invariants
QL, QR limQ(x,0) as x! 0�, x! 0+

Q0L, Q0R Constant slopes oQ
ox for x < 0, x > 0

RA(Æ;QL,QR) Solution of the Riemann problem subject to data QL, QR

Q
*

RA(0;QL,QR)
Q1, Q2 The value of Q to the left, the right of contact discontinuity
Q�(x,t), Q+(x,t) The solution in the left, the right
ðoQ

ot Þ�
oQ
ot ðx; tÞ at x = 0 as t! 0+

DQ/Dt The material derivative of Q, oQ
ot þ u oQ

ox
(DQ/Dt)

*
The limiting value of DQ/Dt at x = 0 as t! 0+

u � c, u, u + c Three eigenvalues
b, a Two characteristic coordinates
rL, rR Shock speed at time zero, corresponding to u � c, u + c

l2 ¼ c�1
cþ1 c > 1 the polytropic index, c = 1.4 for air
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which may be properly normalized, see below for polytropic gases. Then the coordinates (x,t) can be expressed
as
x ¼ xða; bÞ; t ¼ tða; bÞ; ð3:2Þ

which satisfy
ox
oa
¼ ðu� cÞ ot

oa
;

ox
ob
¼ ðuþ cÞ ot

ob
ð3:3Þ
and the characteristic equations for w in (2.8) and S in (2.9) become
oS
ob
¼ ot

ob
� c oS

ox
;

ow
ob
¼ ot

ob
� cKðq; SÞ oS

ox
. ð3:4Þ
Differentiating the first equation in (3.3) with respect to b, the second with respect to a, and subtracting, we see
that the function t = t(a,b) satisfies,
2c
o2t

oaob
¼ � oðuþ cÞ

oa
� ot
ob
þ oðu� cÞ

ob
� ot
oa

. ð3:5Þ
As pointed out in Section 2, the initial structure of (1.1) and (2.18) is determined by the associated Riemann
problem. So the rarefaction wave in Fig. 2.1(a) is asymptotically the same as the associated rarefaction wave
RA in Fig. 2.1(b) at the origin. The latter is expressed by using
x=t ¼ u� c; w ¼ constant ¼ wL; S ¼ SL. ð3:6Þ

Note that the flow is isentropic throughout this associated rarefaction wave and recall (2.5) for the definition
of w. Then it is reasonable to denote
fLðcÞ :¼
Z q

cðx; SLÞx�1 dxþ c; ð3:7Þ
which is invertible. Note that in view of (2.5) and (3.6), we have
w � wL ¼ fLðcÞ þ x=t ð3:8Þ

throughout the rarefaction wave of the associated Riemann problem. Hence, we obtain
c ¼ f �1
L ðwL � x=tÞ. ð3:9Þ
Therefore we get the characteristic coordinates for this associated rarefaction wave as follows: b = x/t and
aðx; tÞ ¼ �a is the integral curve
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dx
dt
¼ uþ c ¼ x=t þ 2f �1

L ðwL � x=tÞ; ð3:10Þ
subject to the initial condition xðt ¼ �a=bLÞ ¼ �a. Correspondingly, we denote x and t as functions of a and b,
x ¼ xassða; bÞ; t ¼ tassða; bÞ. ð3:11Þ

They are the leading terms (in powers of a) of the transformation (3.2), as a! 0,
xða;bÞ ¼ xassða; bÞ þOða2Þ; tða; bÞ ¼ tassða; bÞ þOða2Þ. ð3:12Þ

In particular, for the general rarefaction wave, see Fig. 2.1(a), we have
oðu� cÞ
ob

ð0; bÞ ¼ 1;
ot
oa
ð0; bÞ ¼ otass

oa
ð0; bÞ; ot

ob
ð0; bÞ � 0; bL 6 b 6 b�. ð3:13Þ
For the case of polytropic gases, it follows from (2.13) that fL(c) = l�2c, where l2 ¼ c�1
cþ1

so that throughout the
rarefaction wave, we have
u ¼ l2wL þ ð1� l2Þx=t; c ¼ l2ðwL � x=tÞ. ð3:14Þ

The corresponding characteristic curves are
bðx; tÞ ¼ x=t; aðx; tÞ ¼ tðwL � x=tÞ1=ð2l2Þ � ðcL=l
2Þ�

1
2l2 � bL. ð3:15Þ
Denote a0 ¼ a � ðcL=l2Þ
1

2l2=bL. Then we have
bðx; tÞ ¼ x=t; a0ðx; tÞ ¼ tðwL � x=tÞ1=ð2l2Þ. ð3:16Þ

We use (a 0,b) as the characteristic coordinates from now on, and replace a 0 by a. Therefore, for the polytropic
gases, we have
tassða; bÞ ¼
a

ðwL � bÞ1=ð2l2Þ ; xassða; bÞ ¼
ab

ðwL � bÞ1=ð2l2Þ . ð3:17Þ
The total derivatives Du/Dt and Dp/Dt are functions of a, b throughout the rarefaction wave. A key ingre-
dient in the resolution of the centered rarefaction wave (and, in fact, the GRP in general) is the fact that their
limiting values, as a! 0, satisfy a simple linear relation, as expressed in the following lemma.

Lemma 3.1. The limiting values (Du/Dt)(0,b) and (Dp/Dt)(0,b) satisfy the linear relation
aL

Du
Dt
ð0; bÞ þ bL

Dp
Dt
ð0; bÞ ¼ dLðbÞ ð3:18Þ
for all bL 6 b 6 b*, where
ðaL; bLÞ ¼ 1;
1

qð0;bÞcð0; bÞ

� �
ð3:19Þ
and dL = dL(b) is a function just depending on the initial data UL, U 0L, and the Riemann solution RA(x/t,;UL,UR).

For polytropic gases, dL is
dL ¼
1þ l2

1þ 2l2

cð0; bÞ
cL

� �1=ð2l2Þ

þ l2

1þ 2l2

cð0; bÞ
cL

� �ð1þl2Þ=l2
" #

T LS0L � cL

cð0; bÞ
cL

� �1=ð2l2Þ

w0L. ð3:20Þ
Note that the limiting values q(0,b), c(0,b) are obtained from the solution to the associated Riemann problem.

Also, TLS0L, w 0L are given by the formula (2.17) and (2.16), respectively.

Proof. The equation for w in (2.6) and the equation for S in (2.1) yield
Du
Dt
þ 1

qc
Dp
Dt
¼ Dw

Dt
. ð3:21Þ
So we only need to compute Dw/Dt at (0,b). From (2.8) we have
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Dw
Dt
¼ cKðq; SÞ oS

ox
� c

ow
ox

. ð3:22Þ
Denote
Aða; bÞ :¼ cKðq; SÞ � oS
ox
ða; bÞ. ð3:23Þ
It follows that we just need to compute A(0,b) and cð0; bÞ ow
ox ð0; bÞ separately.

(i) The computation of A(0,b). Note that oS/ox is regarded as a function of a and b although the derivative
with respect to x is involved. Since it vanishes identically in the case of the associated Riemann solution, it is a
regular function of a and b. Then the characteristic equation for S in (3.4) implies
o2S
oaob

ða; bÞ ¼ o2t
oaob

� c oS
ox
þ ot

ob
o

oa
c
oS
ox

� �
. ð3:24Þ
Setting a = 0 and using (3.5) and (3.13), one obtains
o

ob
oS
oa
ð0; bÞ

� �
¼ 1

2cð0; bÞ �
ot
oa
ð0; bÞ � cð0; bÞ � oS

ox
ð0; bÞ. ð3:25Þ
Thus with the fact that
oS
oa
¼ ot

oa
oS
ot
þ ðu� cÞ oS

ox

� �
¼ �c

ot
oa

oS
ox
; ð3:26Þ
we arrive at
o

ob
oS
oa
ð0; bÞ

� �
¼ � 1

2c
oS
oa
ð0; bÞ. ð3:27Þ
Integrating this equation from bL to b yields
oSð0; bÞ
oa

¼ oSð0; bLÞ
oa

exp �
Z b

bL

1

2cð0; nÞ dn

� �
. ð3:28Þ
It follows, by using (3.26), that
c
oS
ox
ð0; bÞ ¼ otass

oa

� ��1

ð0; bÞ otass

oa

� �
ð0; bLÞ � cLS0L exp �

Z b

bL

1

2cð0; nÞ dn

� �
. ð3:29Þ
That is, we get
Að0; bÞ ¼ Kðqð0; bÞ; SLÞ �
otass

oa

� ��1

ð0; bÞ otass

oa

� �
ð0; bLÞ � cLS0L exp �

Z b

bL

1

2cð0; nÞ dn

� �
. ð3:30Þ
Particularly, for the polytropic gases, we have, by using (3.14) and (3.17),
otassð0; bÞ
oa

¼ 1

ðwL � bÞ
1

2l2

¼ 1

ðc=l2Þ
1

2l2

; exp �
Z b

bL

1

2cð0; nÞ dn

� �
¼ c

cL

� � 1
2l2

. ð3:31Þ
We use (2.2) and (2.12) to get T=T L ¼ c2=c2
L. Therefore, we conclude, by recalling (2.15), for the case of poly-

tropic gases,
Að0; bÞ ¼ c
cL

� �ð1þl2Þ=l2

T LS0L; ð3:32Þ
where T LS0L is given by (2.17).
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(ii) The computation of cð0;bÞ � ow
ox ð0; bÞ. First we observe, using (2.8),
ow
oa
ð0; bÞ ¼ ot

oa
ð0; bÞ ow

ot
þ ðu� cÞ ow

ox

� �
ð0; bÞ ¼ ot

oa
ð0; bÞ ow

ot
þ ðuþ cÞ ow

ox
� 2c

ow
ox

� �
ð0; bÞ

¼ ot
oa
ð0; bÞ Að0; bÞ � 2cð0; bÞ � ow

ox
ð0; bÞ

� �
. ð3:33Þ
That is
cð0;bÞ ow
ox
ð0; bÞ ¼ � 1

2

otass

oa

� ��1

ð0; bÞ � ow
oa
ð0; bÞ � Að0; bÞ

" #
. ð3:34Þ
Note that A(0,b), as function of b, is already known in (3.30). Therefore we are left with the calculation of
(ow/oa)(0,b). The characteristic equation for w in (3.4) gives
o
2w

oaob
¼ o

2t
oaob

� Aða; bÞ þ ot
ob

oAða; bÞ
oa

. ð3:35Þ
Setting a = 0 and recalling (3.5) and (3.13), we obtain
o

ob
ow
oa
ð0; bÞ

� �
¼ 1

2cð0; bÞ �
otass

oa
ð0; bÞ � Að0; bÞ. ð3:36Þ
The integration from bL to b gives
ow
oa
ð0; bÞ ¼ ow

oa
ð0; bLÞ þ

Z b

bL

1

2cð0; nÞ �
otass

oa
ð0; nÞ � Að0; nÞdn; ð3:37Þ
where the initial data (ow/oa)(0,bL) is obtained from (3.33) by setting b = bL and ðow=oxÞð0; bLÞ ¼ w0L.
For the polytropic gases, by using (3.14), (3.17) and (3.32) and noting T=T L ¼ c2=c2

L, we obtain
ow
oa
ð0; bÞ ¼ ow

oa
ð0; bLÞ �

2B
1þ 2l2

ðcð1þ2l2Þ=ð2l2Þ � cð1þ2l2Þ=ð2l2Þ
L Þ; ð3:38Þ
where
B ¼ 1

2
ðl2Þ1=ð2l2Þc�ðl

2þ1Þ=l2

L T LS0L. ð3:39Þ
Inserting (3.32) and (3.38) into (3.22), we get the right-hand side of (3.21), as given by (3.20) (for the polytropic
gases). h
4. The resolution of shocks

In this section, we follow the idea of [22] in order to resolve the shock at the origin. Our objective is to get
an equation, which is analogous to (3.18). In other words, we look for another linear relation for the time
derivatives of u and p, which can be used to obtain the limiting values (Du/Dt)* and (Dp/Dt)* at
(x,t) = (0,0+) (see Theorem 5.1).

Let x = x(t) be the shock trajectory which is associated with the u + c characteristic family and assume that
it propagates with the speed r = x 0(t) > 0 to the right, see Fig. 2.1(a). We use QðtÞ ¼ QðxðtÞ þ 0; tÞ and
Q(t) = Q(x(t) � 0, t) to denote the pre-shock and post-shock values of Q, respectively. Along this shock,
the (p,u)-Rankine–Hugoniot relation is written in the form,
u ¼ �uþ Uðp; �p; �qÞ; ð4:1Þ
and the (q,p)-Rankine–Hugoniot relation takes the form,
q ¼ Hðp; �p; �qÞ. ð4:2Þ
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The shock velocity is given by
r ¼ qu� qu
q� �q

. ð4:3Þ
We take the directional derivative along the shock trajectory x = x(t) to get
o

ot
þ r

o

ox

� �
C ¼ 0; ð4:4Þ
where either C ¼ u� �u� Uðp; �p; �qÞ or C ¼ q� Hðp; �p; �qÞ. The continuity property of solutions adjacent to the
shock front implies that we can replace the time derivatives of U by the x-derivatives in the pre-shock region,
and similarly we replace the x-derivatives of U by the time derivatives in the post-shock region, for which (2.1)
and (2.4) are used. In the setup of Fig. 2.1(a), U is given by U+(x,t) and U is given by U2. Note that the vari-
ables u and p are continuous across the contact discontinuity with the speed u and thereby the total derivatives
Du/Dt and Dp/Dt are also continuous in the intermediate region between the rarefaction wave and the shock.
Therefore, by taking the limit t! 0+, we get
Du
Dt
! Du

Dt

� �
�
;

Dp
Dt
! Dp

Dt

� �
�
;

oU
ox
! U 0R ð4:5Þ
and also
ðq; u; pÞ ! ðq2�; u�; p�Þ; ð�q; �u; �pÞ ! ðqR; uR; pRÞ. ð4:6Þ

Note again that q undergoes a jump across the contact discontinuity. This is why we write q2* in (4.6), which is
the limiting value of the density between the contact discontinuity and the shock. The same thing applies to the
limiting value of c2*.

Lemma 4.1. The limiting values (Du/Dt)* and (Dp/Dt)* satisfy
aR

Du
Dt

� �
�
þ bR

Dp
Dt

� �
�
¼ dR; ð4:7Þ
where aR, bR, dR are constant, depending only on the right hand of initial data (2.18), UR, U 0R, and the solution
RA(0;UL,UR) to the associated Riemann problem. They are given by the following expressions:
aR ¼ 1þ q2� � ðr� u�Þ � U1; bR ¼ �
1

q2� � c2
2�
� ðr� u�Þ þ U1

� �
;

dR ¼ LR
p � p0R þ LR

u � u0R þ LR
q � q0R ð4:8Þ
and
LR
p ¼ �

1

qR

þ ðr� uRÞ � U2;

LR
u ¼ r� uR � qR � c2

R � U2 � qR � U3;

LR
q ¼ ðr� uRÞ � U3.

ð4:9Þ
Here Ui, i = 1, 2, 3, are:
U1 ¼
oU
op
ðp�; pR; qRÞ; U2 ¼

oU
o�p
ðp�; pR; qRÞ; U3 ¼

oU
o�q
ðp�; pR; qRÞ. ð4:10Þ
Proof. We follow the differentiation (4.4) for C ¼ u� �u� Uðp; �p; �qÞ to get
ou
ot
þ r

ou
ox
¼ o�u

ot
þ r

o�u
ox
þ oU

op
� op

ot
þ r

op
ox

� �
þ oU

o�p
� o�p

ot
þ r

o�p
ox

� �
þ oU

o�q
� o�q

ot
þ r

o�q
ox

� �
. ð4:11Þ
Using (2.1) and (2.4), we have:
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ou
ot
þ r

ou
ox
¼ Du

Dt
� 1

qc2
ðr� uÞDp

Dt
;

op
ot
þ r

op
ox
¼ Dp

Dt
� qðr� uÞDu

Dt
.

ð4:12Þ
Then we use (2.1) and (2.4) again to replace the time derivatives of �p and �q by the corresponding space deriv-
atives and proceed to take the limit t! 0+ for the resulting equation to finally obtain (4.7). h

Remark 4.2 (c-law case). In the polytropic case, we have (see [14, Chapter 5] for the definition of U)
Uðp; �p; �qÞ ¼ ðp � �pÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� l2

�qðp þ l2�pÞ

s
;

U1 ¼
1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� l2

qRðp� þ l2pRÞ

s
� p� þ ð1þ 2l2ÞpR

p� þ l2pR

;

U2 ¼ �
1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� l2

qRðp� þ l2pRÞ

s
� ð2þ l2Þp� þ l2pR

p� þ l2pR

;

U3 ¼ �
p� � pR

2qR

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� l2

qRðp� þ l2pRÞ

s
.

ð4:13Þ
5. Time derivative of solutions at the singularity

In this section we use the results of Sections 3 and 4 in order to calculate the instantaneous value (oU/ot)*.
We assume the setup of Fig. 2.1, i.e., the rarefaction wave moves to the left and the shock moves to the right,
separated by a contact discontinuity with the speed u. Due to the continuity property of the pressure p (respec-
tively, the velocity u), the total derivative Dp/Dt (respectively, Du/Dt) is continuous across the contact discon-
tinuity and thus the limiting values (Dp/Dt)* (respectively, (Du/Dt)*) are the same in the two subregions.
Hence it is convenient to first calculate (Du/Dt)*, (Dp/Dt)*, and then return to (ou/ot)*, (op/ot)*. The value
(oq/ot)* then follows immediately. For this purpose, we summarize the results in Lemmas 3.1 and 4.1 to
get the following theorem.

Theorem 5.1 (Nonsonic case). Assume that the t-axis is not included in the rarefaction wave. Then the limiting

values (Du/Dt)* and (Dp/Dt)* are obtained by solving a pair of linear algebraic equations:
aL

Du
Dt

� �
�
þ bL

Dp
Dt

� �
�
¼ dL;

aR

Du
Dt

� �
�
þ bR

Dp
Dt

� �
�
¼ dR;

ð5:1Þ
where aL, aR, bL, bR, dL and dR are defined in Lemmas 3.1 and 4.1, and summarized for all cases in Appen-

dix A, respectively. These coefficients depend only on the initial data (2.18) and the local Riemann solution

R(0; UL,UR).

We now proceed to the basic step of the GRP solution (see (1.4)), i.e., the calculation of (oU/ot)*.

Theorem 5.2 (Nonsonic case). The limiting values of time derivatives (ou/ot)* and (op/ot)* are calculated with

the following formulae
ou
ot

� �
�
¼ Du

Dt

� �
�
þ u�

q�c2
�

Dp
Dt

� �
�
;

op
ot

� �
¼ Dp

Dt

� �
þ q�u�

Du
Dt

� �
.

ð5:2Þ
� � �
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Proof. From (2.4) we have
ou
ot
¼ Du

Dt
� u

ou
ox
¼ Du

Dt
þ u

qc2

Dp
Dt

. ð5:3Þ
Then we get (ou/ot)* by taking the limit t! 0+. Similarly we can get the expression from (2.1) for (op/ot)* in
(5.2). h

Remark 5.3. Note that in the setup of Fig. 2.1, q*, c* are those obtained behind the contact discontinuity
(compare Eq. (4.6) and the paragraph after it).

When the t-axis (x = 0) is located inside a rarefaction fan, we have a sonic case, and Theorems 5.1 and 5.2
do not apply. However, since one of the characteristic curves becomes tangential to the t-axis, the situation
becomes much simpler. Indeed, we have the following theorem.

Theorem 5.4 (Sonic case). Assume that the t-axis is located inside the rarefaction wave associated with the u � c

characteristic family. Then we have
ou
ot

� �
�
¼ dLð0Þ;

op
ot

� �
�
¼ q�u�dLð0Þ; ð5:4Þ
where dL(b) is defined in Lemma 3.1.

Proof. On one hand, using (2.6), we have
ou
ot
þ 1

qc
op
ot
¼ ow

ot
� Kðq; SÞ oS

ot
¼ ow

ot
þ uKðq; SÞ oS

ox
. ð5:5Þ
Using (2.8) and (2.9), we proceed to get
Kðq; SÞ oS
ox
¼ Kðq; SÞ

c
oS
ot
þ ðuþ cÞ oS

ox

� �
¼ 1

c
ow
ot
þ ðuþ cÞ ow

ox

� �
. ð5:6Þ
Then from (5.5), we obtain
ou
ot
þ 1

qc
op
ot
¼ uþ c

c
Dw
Dt

. ð5:7Þ
With the results in (3.18) and (3.21), we conclude that (Dw/Dt)* = dL(0). Then we get
ou
ot

� �
�
þ 1

q�c�

op
ot

� �
�
¼ 2dLð0Þ. ð5:8Þ
On the other hand, using the fact that the origin the t-axis is tangential to the characteristic curve defined by
u* � c* and using (2.11), we have
o/
ot

� �
�
¼ o/

ot

� �
�
þ ðu� � c�Þ

o/
ox

� �
�
¼ �Kðq�; S�Þ

oS
ot

� �
�
þ ðu� � c�Þ

oS
ox

� �
�

� �

¼ �Kðq�; S�Þ
oS
ot

� �
�
. ð5:9Þ
It follows that
ou
ot

� �
�
� 1

q�c�

op
ot

� �
�
¼ o/

ot

� �
�
þ Kðq�; S�Þ

oS
ot �
¼ 0; ð5:10Þ
where the formula (2.10) is used. Note that indeed (5.10) follows directly from the characteristic relation sat-
isfied along u � c characteristics. We combine (5.8) and (5.10) to yield (5.4). h
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Now we are left with the calculation of (oq/ot)*. This calculation depends on whether the contact discon-
tinuity propagates to the left or the right. In other words, we calculate (oq/ot)* from the left hand side; and in
the right-hand side if u* < 0.

Theorem 5.5 (General case). The limiting value (oq/ot)* is calculated as follows.

(i) If u* > 0, it is obtained by the formula
oq
ot

� �
�
¼ 1

c2
�

op
ot

� �
�
þ op

oS
ðq�; S�Þ �

u�
c�Kðq�; S�Þ

Að0; b�Þ
� �

; ð5:11Þ
where A(0,b*) is given in (3.30).

(ii) If u* < 0, the limiting value (oq/ot)* is calculated by the formula
gR
q

oq
ot

� �
�
þ gR

p

Dp
Dt

� �
�
þ gR

u

Du
Dt

� �
�
¼ u� � fR; ð5:12Þ
where gR
q , gR

p , gR
u and fR are constant, depending on the initial data (2.18) in the right hand side and the

Riemann solution RA(0;UL,UR). They are expressed in the following,
gR
q ¼ u� � r; gR

p ¼
r

c2
2�
� u�H 1; gR

u ¼ u� � q2�ðr� u�Þ � H 1;

fR ¼ ðr� uRÞ � H 2 � p0R þ ðr� uRÞ � H 3 � q0R � qR � ðH 2 � c2
R þ H 3Þ � u0R.

ð5:13Þ
Here r is given in (4.3), and Hi, i = 1, 2, 3, are
H 1 ¼
oH
op
ðp�; pR; qRÞ; H 2 ¼

oH
o�p
ðp�; pR; qRÞ; H 3 ¼

oH
o�q
ðp�; pR; qRÞ. ð5:14Þ
Recall that H is defined in (4.2). Also we remark that if u* = 0, we can use either (5.11) or (5.12).

Proof. For the first case that u* > 0, we use the state equation p = p(q,S) and oS
ot ¼ �u oS

ox by the fact in (2.1) to
get
op
ot
¼ c2 oq

ot
þ op

oS
oS
ot
¼ c2 oq

ot
� u

op
oS

oS
ox

. ð5:15Þ
Then we use the definition of A(a,b) in (3.23) in order to obtain (5.11) after setting (a,b) = (0,b*).
For the second case that u* < 0, we follow the differentiation (4.4) for C ¼ q� Hðq; �p; �qÞ, exactly as was

done in the proof of Lemma 4.1. h

Remark 5.6 (c-law case). In the case of polytropic gases, we have the explicit formulae for (5.11) and Hi,
i = 1, 2, 3, in (5.14). Indeed, using (2.12),(2.15) and (3.32),(5.11) becomes
oq
ot

� �
�
¼ 1

c2
�

op
ot

� �
�
þ ðc� 1Þq�u�

c�
cL

� �ð1þl2Þ=l2

T LS0L

 !
. ð5:16Þ
The explicit formulae for H and Hi, i = 1, 2, 3, are (see [14, Chapter 5] for the definition of H)
Hðp; �p; �qÞ ¼ �q
p þ l2�p
�p þ l2p

; H 1 ¼
qRð1� l4ÞpR

ðpR þ l2p�Þ
2
; H 2 ¼

qRðl4 � 1Þp�
ðpR þ l2p�Þ

2
; H 3 ¼

p� þ l2pR

pR þ l2p�
. ð5:17Þ
6. Acoustic case

When UL = UR and U 0L 6¼ U 0R, the acoustic case follows. Then only linear waves emanate from the origin.
This scheme thus becomes simple and is stated in the following theorem.
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Theorem 6.1 (Acoustic case). When UL = U* = UR and U 0L 6¼ U 0R, we have the acoustic case. If u* � c* < 0 and

u* + c* > 0, then (ou/ot)* and (op/ot)* can be solved to be
ou
ot

� �
�
¼ � 1

2
ðu� þ c�Þ u0L þ

p0L
q�c�

� �
þ ðu� � c�Þ u0R �

p0R
q�c�

� �� �
;

op
ot

� �
�
¼ � q�c�

2
ðu� þ c�Þ u0L þ

p0L
q�c�

� �
� ðu� � c�Þ u0R �

p0R
q�c�

� �� �
.

ð6:1Þ
Then the quantity (oq/ot)* is calculated from the equation of state p = p(q,S),
oq
ot

� �
�
¼

1
c2
�

op
ot


 �
� þ u�ðp0L � c2

�q
0
LÞ

� 

if u� ¼ uL ¼ uR > 0;

1
c2
�

op
ot


 �
� þ u�ðp0R � c2

�q
0
RÞ

� 

if u� ¼ uL ¼ uR < 0.

8<
: ð6:2Þ
Proof. First we consider the acoustic wave in the left. Denote U�(x,t), U1(x,t) the states in the left hand side
and the right hand side of the u � c characteristic curve emanating from the origin, respectively. See the setup
in Fig. 2.1. Since the solution is continuous across this characteristic curve, we take the differentiation along it
for the variable u and get
ou�
ot
þ ðu� cÞ ou�

ox
¼ ou1

ot
þ ðu� cÞ ou1

ox
. ð6:3Þ
Using (2.1) and (2.4), we have
Du�
Dt
� c

ou�
ox
¼ ou1

ot
� u� c

qc2
�Dp1

Dt
. ð6:4Þ
It follows, after taking the limit t! 0+, and using (2.4) again, that
� 1

q�
p0L � c�u0L ¼

ou
ot

� �
�
� u� � c�

q�c2
�
� Dp

Dt

� �
�
. ð6:5Þ
By resolving the acoustic wave moving to the right, we get
� 1

q�
p0R þ c�u0R ¼

ou
ot

� �
�
� u� þ c�

q�c2
�
� Dp

Dt

� �
�
. ð6:6Þ
We combine (6.5) and (6.6) to yield (ou/ot)* in (6.1) and
2

q�c�
� Dp

Dt

� �
�
¼ � 1

q�
p0L � c�u0L þ

1

q�
p0R � c�u0R. ð6:7Þ
Then using (2.1) and (2.4) again, we obtain (op/ot)* as follows:
Du
Dt

� �
�
¼ ou

ot

� �
�
� u�

q�c2
�

Dp
Dt

� �
�
;

op
ot

� �
�
¼ Dp

Dt

� �
�
þ q�u�

Du
Dt

� �
�
. ð6:8Þ
After getting (op/ot)*, we use the equation of state p = p(q,S) to obtain (oq/ot)*. We consider the case that
u* > 0. Then we have
op
ot

� �
�
¼ c2

�
oq
ot

� �
�
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oS
ðq�; S�Þ �

oS
ot

� �
�
¼ c2

�
oq
ot

� �
�
� u�

op
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ðq�; S�Þ �

oS
ox

� �
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¼ c2
�

oq
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� �
�
� u�
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oS
ðq�; S�Þ � S0L ¼ c2

�
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ot

� �
�
� u�ðp0L � c2

�q
0
LÞ. ð6:9Þ
This gives (6.2). h
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Remark 6.2. We can take the limit UL = U* = UR for the results in Section 5 to get Theorem 6.1. Another
approach to prove Theorem 6.1 is to use a standard linearization method around the state U* with the rigor-
ous justification.

7. Two-dimensional extension

We use the Strang splitting [20,4, Chapter 7] for the two-dimensional compressible Euler system:
qt þr � ðqV Þ ¼ 0;

ðqV Þt þr � ðqV � V þ pÞ ¼ 0;

ðqEÞt þr � ðV ðqE þ pÞÞ ¼ 0;

ð7:1Þ
where in addition to the thermodynamical flow variables q, p and e, V = (u,v) is the velocity and E = (u2 + v2)/
2 + e.

The Strang method splits (7.1) into two subsystems,
oq
ot þ

oðquÞ
ox ¼ 0;

oðquÞ
ot þ

oðqu2þpÞ
ox ¼ 0;

oðqvÞ
ot þ

oðquvÞ
ox ¼ 0;

oðqEÞ
ot þ

ouðqEþpÞ
ox ¼ 0;

8>>>>><
>>>>>:

oq
ot þ

oðqvÞ
oy ¼ 0;

oðquÞ
ot þ

oðquvÞ
oy ¼ 0;

oðqvÞ
ot þ

oðqv2þpÞ
oy ¼ 0;

oðqEÞ
ot þ

ovðqEþpÞ
oy ¼ 0.

8>>>>>><
>>>>>>:

ð7:2Þ
We denote by LxðDtÞ, LyðDtÞ the one-dimensional evolution operator for one time step for the subsys-
tems in (7.2), respectively. Then the evolution of one time step of the 2D Strang splitting algorithm is
given by
Unþ1 ¼Lx
Dt
2

� �
LyðDtÞLx

Dt
2

� �
U n. ð7:3Þ
Therefore it suffices to consider the subsystem in the x-direction in (7.2). Then, in addition to the GRP reso-
lution we already obtained for q, u and p, we just need to provide the resolution for the velocity component v.
Note that the component v is transported with the speed u,
ov
ot
þ u

ov
ox
¼ 0. ð7:4Þ
Theorem 7.1. Assume that a rarefaction wave moves to the left and a shock wave moves to the right, the line

x = 0 is located in the intermediate region, see Fig. 2.1. Then

(i) If u* > 0, the value (ov/ot)* is computed from the rarefaction wave (left hand) side as follows:
ov
ot

� �
�
¼ �u� �

q�
qL

� v0L. ð7:5Þ
(ii) If u* < 0, the value (ov/ot)* is computed from the shock wave (right hand) side, and
ov
ot

� �
�
¼ � u�ðrR � uRÞ

rR � u�
v0R. ð7:6Þ
Proof. In the case that u* > 0, the contact discontinuity moves to the right, and v is continuous in the region to
the left of this contact discontinuity. Since v is constant along particle lines, if we take x2 < x1 < 0 and let v2

and v1 be the corresponding values of v, we get vi = v(xi(t),t), where xi(t) is the particle trajectory starting at xi,
i = 1, 2. The amount of mass DmðtÞ ¼

R x1ðtÞ
x2ðtÞ qðx; tÞdx between the two particles is also conserved, so that we get
v2 � v1

Dmð0Þ ¼
vðx2ðtÞ; tÞ � vðx1ðtÞ; tÞ

DmðtÞ . ð7:7Þ
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Let x2 tend to zero, we obtain
ov
ox

� �
�
¼ q�

qL

� v0L. ð7:8Þ
Then (7.5) follows by using Eq. (7.4).
For u* < 0, the contact discontinuity moves to the left. Then we need to compute (ov/ot)* from the right-

hand side (shock side). Since v is continuous across the shock x = x(t), v(x(t) � 0, t) = v(x(t) + 0, t) and the
directional derivative of v along the shock trajectory x = x(t) is also continuous. Hence we have
ovðxðtÞ � 0; tÞ
ot

þ r
ovðxðtÞ � 0; tÞ

ox
¼ ovðxðtÞ þ 0; tÞ

ot
þ r

ovðxðtÞ þ 0; tÞ
ox

. ð7:9Þ
Letting t! 0+, we have
ovðxðtÞ þ 0; tÞ
ox

! v0R;
ovðxðtÞ þ 0; tÞ

ot
! �uRv0R ð7:10Þ
and
ovðxðtÞ � 0; tÞ
ot

! ov
ot

� �
�
;

ovðxðtÞ � 0; tÞ
ox

! � 1

u�

ov
ot

� �
�
. ð7:11Þ
Inserting them into (7.9) yields (7.6). h
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Fig. 9.1. Numerical results for Sod’s problem: 100 grid points are used.
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We remark at this point that although the velocity component v is continuous across a rarefaction or a shock,
the derivative of v cannot be computed simply from one side as in the acoustic case due to the nonlinear effect.
Indeed, Eqs. (7.5) and (7.6) correct the mistake in the original GRP scheme, see the formula (7.26) in [4, p. 247].

8. Implementation of the GRP scheme

In this section we describe the one-dimensional implementation of the GRP scheme through the following
four steps.

Step 1. Given piecewise initial data
U nðxÞ ¼ Un
j þ rn

j ðx� xjÞ; x 2 ðxj�1=2; xjþ1=2Þ; ð8:1Þ
we solve the Riemann problem for (1.1) ((7.2) for 2-D splitting) to define the Riemann solution
U n
jþ1=2 ¼ R 0; U n

j þ
Dx
2

rn
j ;U

n
jþ1 �

Dx
2

rn
jþ1

� �
. ð8:2Þ
This is the same as the classical Godunov scheme [10], i.e., in the case of piecewise constant data
rn

j � 0. In the present paper, we use the exact Riemann solver in [21, p. 152].
Step 2. Determine ðoU=otÞnjþ1=2 according to Theorems 5.2, 5.4, 5.5 and 6.1 (in the acoustic case). All coeffi-

cients are summarized in Appendix A. Then calculate the numerical fluxes using (1.4).
Step 3. Evaluate the new cell averages U nþ1

j using Eq. (1.3).
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Fig. 9.2. Numerical results for a very strong nearly stationary shock: 100 grid points are used.
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Step 4. Update the slope by the following procedure. Define:
U nþ1;�
jþ1=2 ¼ U n

jþ1=2 þ Dt
oU
ot

� �n

jþ1=2

;

rnþ1;�
j ¼ 1

Dx
ðDUÞnþ1;�

j :¼ 1

Dx
ðUnþ1;�

jþ1=2 � Unþ1;�
j�1=2 Þ.

ð8:3Þ
In order to suppress local oscillations near discontinuities, we apply to rnþ1;�
j a monotonicity algorithm–slope

limiters, see [1,9,22],
rnþ1
j ¼ minmod a

U nþ1
j � U nþ1

j�1

Dx
; rnþ1;�

j ; a
U nþ1

jþ1 � U nþ1
j

Dx

 !
; ð8:4Þ
where the parameter a 2 [0,2). In Section 9, we use a = 1.9 except Fig. 9.2 for which a = 1.0 enhancing the
dissipative mechanism. We note that the computation of the new slopes is based on the solution of the
GRP, as in Eq. (8.3), and hence independent of the new cell-averages. This approach is an essential ingre-
dient of the GRP methodology and seems to be unique among the class of second-order high-resolution
methods.

Remark 8.1. In comparison with the classical Godunov scheme (Step 1), we only need to add Step 2 giving
ðoU=otÞnjþ1=2. This is accomplished at most by solving linear algebraic equations. In most cases (sonic,
acoustic, etc.), the computation of ðoU=otÞnjþ1=2 is simple, see Theorems 5.4 and 6.1.
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Fig. 9.3. Numerical results for shock and contact interaction: 100 grid points are used.
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Remark 8.2. If the difference of Un
jþ1=2;� and Un

jþ1=2;þ is relatively small, the acoustic case can be used, see The-
orem 6.1. The resulting scheme is call the E1-scheme. In contrast, if the general case in Section 5 is used, we
label the resulting scheme the E1-scheme.
9. Numerical examples

We choose several one-dimensional and two-dimensional examples to illustrate the performance of our
scheme. They are one-dimensional Riemann problems, the interaction of one-dimensional waves, and three
two-dimensional Riemann problems. All of them were often used as test problems to check numerical
schemes.
9.1. One-dimensional examples

We choose five well-understood one-dimensional examples to test our scheme.
(a) Sod problem. As commonly used, our first example is the shock tube problem by Sod [19]. The gas is

initially at rest with q = 1, p = 1 for 0 6 x 6 50 and q = 0.125, p = 0.1 for 50 < x 6 100. Numerical results are
shown at time t = 15.0 in Fig. 9.1. The solid lines represent the exact solutions, the crosses show the Godunov
solutions, while the dots stand for the GRP numerical solutions. We can see that our scheme does very well in
the smooth region, and is comparable at discontinuities with other schemes.

(b) Nearly stationary shock. Initially, q = 4.0, p = 4/3, u = �0.3 for 0 6 x < 20; and q = 1.0, p = 10�6 and
u = �1.3 for 20 < x 6 100. The polytropic index is taken to be c = 5/3. The result is shown in Fig. 9.2. This
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Fig. 9.4. Numerical results for the interacting blast wave problem: 200 grid points are used.
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example involves a very strong nearly stationary shock, whose exact speed is 3.4052 · 10�2. This is an almost
infinite shock in the sense that the density ratio is close to its maximum. The ‘‘wavelike’’ behavior can be
smoothed out by enhancing the dissipative mechanism, as pointed out [1]. For Fig. 9.2, we take a = 1.0,
see (8.4).

(c) Shock and contact interaction. This example was proposed in [4, Section 6.2.1]. The initial data are given
at time t = �10, (q,u,p) = (2.8182,1.6064,5.0) for x < �24.90, (q,u,p) = (1,0,1) for �24.90 6 x < 0 and
(q,u,p) = (0.3,0,1.0) for x P 0. A shock emanates from (�24.90,�10) and propagates to the right. It interacts
at time t = 0 with the contact discontinuity emanating from (0,�10). Then a rarefaction wave, a contact dis-
continuity and a shock are produced at (0,0). Fig. 9.3 displays numerical solutions within [�20,90]. We see the
solution is quite accurate (of course the contact discontinuity is obviously smeared as in most second order
schemes).

(d) Interacting blast wave problem [23]. The gas is at rest and ideal with c = 1.4, and the density is every-
where unit. The pressure is p = 1000 for 0 6 x < 10 and p = 100 for 90 < x 6 100, while it is only p = 0.01 in
10 < x < 90. Reflecting boundary conditions are applied at both ends. Numerical solutions are shown in Figs.
9.4 and 9.5. In both figures the solid lines are obtained with 3200 grid points, while we use 200 grid points for
the dots in Fig. 9.4, and 800 grid points is used for the dots in Fig. 9.5.

(e) Low density and internal energy Riemann problem [8,16]. The initial data is given with
(q,u,p) = (1,�2,0.4) for 0 6 x < 50 and (q,u,p) = (1,2,0.4) for 50 6 x 6 100. The solid lines are obtained with
the exact Riemann solvers in [21]. The dotted lines are obtained with 100 points. By this example we show that
the GRP scheme can calculate low density problems and preserve the positivity of the density, pressure and
energy to some extent although we cannot prove this property rigorously (see Fig. 9.6).
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Fig. 9.5. Numerical results for the interacting blast wave problem: 800 grid points are used.
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9.2. Two-dimensional Riemann problems

We choose three two-dimensional Riemann problems as our examples. The two-dimensional Riemann
problems were proposed by Zhang and Zheng [24], then followed by many numerical simulations
[17,16,6,11], etc. Systematic treatments can be found in [14,25]. The flow patterns are quite complex, includ-
ing the Mach reflection, rolling up of slip lines, formation of shocks and much more. Nowadays the two-
dimensional Riemann problems have been useful tests for checking the accuracy of numerical schemes in
several dimensions. We present three examples with contour curves of density in all three examples. The ini-
tial data for each example consists of four constant states in the four quadrants. Furthermore, the initial
data is designed so that only one elementary wave, a shock, a rarefaction wave or a contact discontinuity,
emanates from each initial discontinuity along the coordinate axes. We use the notation (qi,ui,vi,pi) to
express the constant state in the ith quadrant, i = 1,2,3,4.

(f) The interaction of vortex sheets and the formation of spiral. The Riemann initial data are chosen to be
q1 = 0.5, u1 = 0.5, v1 = �0.5, p1 = 5; q2 = 1.0, u2 = 0.5, v2 = 0.5, p2 = 5; q3 = 2.0, u3 = �0.5, v3 = 0.5, p3 = 5;
and q4 = 1.5, u4 = �0.5, v4 = �0.5, p4 = 5. Initially four vortex sheets are supported on the x and y axes with
the same sign, but they have different measures. They interact and form a spiral, as shown in Fig. 9.7. In the
center of the spiral, the density is very low. Compared to [14,6,11,16,17], Fig. 9.7 displays a more accurate result.

(g) Interaction of shocks. This is the 2-D Riemann problem for interacting shocks. It was Configuration C
in [14, p. 244]. See also [6,11,16,17]. The initial data is q1 = 1.5, u1 = 0.0, v1 = 0.0, p1 = 1.5; q2 = 0.5323,
u2 = 1.206, v2 = 0.0, p2 = 0.3; q3 = 0.138, u3 = 1.206, v3 = 1.206, p3 = 0.029; and q4 = 0.5323, u4 = 0.0,
v4 = 1.206, p4 = 0.3. Initially a single planar shock emanates from each coordinate axis. The four shock inter-
act as time evolves, and a very complicated wave pattern emerges. It includes triple points, Mach stems and
contact discontinuities, etc. The numerical result is displayed in Fig. 9.8 and reflects conspicuous phenomenon
in the oblique shock experiments.
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Fig. 9.9. Numerical results for interaction of four planar rarefaction waves.
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(h) The formation of shocks in continuous domain. We check the interaction of four 2-D planar rarefaction
waves, see Fig. 9.9. The Riemann initial data are q1 = 1.0, u1 = 0.0, v1 = 0.0, p1 = 1.0; q2 = 0.5197,
u2 = �0.7259, v2 = 0.0, p2 = 0.4; q3 = 1.0, u3 = �0.7259, v3 = �0.7259, p3 = 1.0; and q4 = 0.5197, u4 = 0.0,
v4 = �0.7259, p4 = 0.4. Initially, there are four planar rarefaction waves emanating from the coordinate axis,
respectively, and they interact. We observe that two symmetric compressive waves in the domain where
rarefaction waves interact. The numerical results are consistent with those in [17,16,6,11]. This is a typical
two-dimensional phenomenon, which never emerges in the interaction of rarefaction waves in one dimension.
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Appendix A. Useful coefficients for the GRP scheme

A.1. The coefficients in Theorem 5.1 for all cases

In Table 2, we collect for all cases the coefficients of the system of the linear algebraic equations in Theorem
5.1 for the polytropic gases. Here we assume that the t-axis (cell interface) is located inside the intermediate
region. In this table, the 1-shock (respectively, 3-shock) refers to as the shock associated with the u � c char-
acteristic family (respectively, u + c). Analogously for the 1-rarefaction wave and the 3-rarefaction wave.

The coefficients for rarefaction waves are given by:
Table
The co

Two ra

Two sh

1-Shoc

1-Rare
ðarare
L ; brare

L Þ ¼ 1;
1

q1�c1�

� �
; ðarare

R ; brare
R Þ ¼ 1;� 1

q2�c2�

� �
;

drare
L ¼ 1þ l2

1þ 2l2

c1�

cL

� �1=ð2l2Þ

þ l2

1þ 2l2

c1�

cL

� �ð1þl2Þ=l2
" #

T LS0L � cL

c1�

cL

� �1=ð2l2Þ

w0L.

drare
R ¼ 1þ l2

1þ 2l2

c2�

cR

� �1=ð2l2Þ

þ l2

1þ 2l2

c2�

cR

� �ð1þl2Þ=l2
" #

T RS0R þ cR
c2�

cR

� �1=ð2l2Þ

/0R.

ðA:1Þ
The coefficients for shock waves are given by:
ashock
L ¼ 1� q1�ðrL � u�ÞH 1ðp�; pL; qLÞ; bshock

L ¼ � 1

q1�c
2
1�
ðrL � u�Þ þ H 1ðp�; pL; qLÞ;

dshock
L ¼ LL

p p0L þ LL
u u0L þ LL

qq0L;

ashock
R ¼ 1þ q2�ðrR � u�ÞH 1ðp�; pR; qRÞ; bshock

R ¼ � 1

q2�c
2
2�
ðrR � u�Þ þ H 1ðp�; pR; qRÞ

� �
;

dshock
R ¼ LR

p p0R þ LR
u u0R þ LR

q q0R;

ðA:2Þ
2
efficients in Theorem 5.1 for all possible cases

refaction waves ðaL; bLÞ ¼ ðarare
L ; brare

L Þ, dL ¼ drare
L

ðaR; bRÞ ¼ ðarare
R ; brare

R Þ, dR ¼ drare
R

ocks ðaL; bLÞ ¼ ðashock
L ; bshock

L Þ, dL ¼ dshock
L

ðaR; bRÞ ¼ ðashock
R ; bshock

R Þ, dR ¼ dshock
R

k and 3-rarefaction wave ðaL; bLÞ ¼ ðashock
L ; bshock

L Þ, dL ¼ dshock
L

ðaR; bRÞ ¼ ðarare
R ; brare

R Þ, dR ¼ drare
R

faction wave and 3-shock ðaL; bLÞ ¼ ðarare
L ; brare

L Þ, dL ¼ drare
L

ðaR; bRÞ ¼ ðashock
R ; bshock

R Þ, dR ¼ dshock
R
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where all quantities involved are:
LL
p ¼ �

1

qL

� ðrL � uLÞH 2ðp�; pL; qLÞ; LL
u ¼ rL � uL þ qLc2

LH 2ðp�; pL; qLÞ þ qLH 3ðp�; pL; qLÞ;

LL
q ¼ �ðrL � uLÞH 3ðp�; pL; qLÞ; rL ¼

q1�u� � qLuL

q1� � qL

;

LR
p ¼ �

1

qR

þ ðrR � uRÞH 2ðp�; pR; qRÞ; LR
u ¼ rR � uR � qRc2

RH 2ðp�; pR; qRÞ � qRH 3ðp�; pR; qRÞ;

LR
q ¼ ðrR � uRÞH 3ðp�; pR; qRÞ; rR ¼

q2�u� � qRuR

q2� � qR

ðA:3Þ
and (denote ð�p; �qÞ ¼ ðpL; qLÞ or ð�p; �qÞ ¼ ðpR; qRÞ):
H 1ðp; �p; �qÞ ¼ 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� l2

�qðp þ l2�pÞ

s
� p þ ð1þ 2l2Þ�p

p þ l2�p
;

H 2ðp; �p; �qÞ ¼ � 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� l2

�qðp þ l2�pÞ

s
� ð2þ l2Þp þ l2�p

p þ l2�p
;

H 3ðp; �p; �qÞ ¼ � p � �p
2�q

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� l2

�qðp þ l2�pÞ

s
.

ðA:4Þ
A.2. Sonic case

When the t-axis is located inside the rarefaction waves associated with u + c. Then we have
ou
ot

� �
�
¼ drare

R ;
op
ot

� �
�
¼ q�u�d

rare
R ; ðA:5Þ
where drare
R is given in (A.1).
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